
Introduction to Materials Science
and Chemistry Applications at

NERSC

Zhengji Zhao
NERSC User Services Group

April 5, 2011

•  Getting started with precompiled materials
science and chemistry applications available
at NERSC
•  Out of memory error and parallel scaling

–  G09
–  VASP

•  Exploring performance benefits from
hybrid (MPI/OpenMP) execution on Hopper

–  Quantum Espresso
•  Summary

Outline

Getting started with the precompiled
materials science and chemistry applications

available at NERSC

Hopper compute nodes have 24 cores per node
–  6008 32 GB memory nodes, 1.33GB per core
–  384 large memory nodes, 64GB per node, 2.67GB per core

Carver compute nodes have 8 cores per node
–  320 24GB memory nodes, 3Gb per core
–  Carver has 80 large memory nodes, 48 GB memory per node, 6GB per core
–  Memory limit: soft 2.5GB and 5.5GB; hard 20Gb and 44Gb, respectively

Computing resources at NERSC

Codes Hopper Franklin Carver
AMBER ! !
G09 !
GAMESS ! ! !
GROMACS ! ! !
MOLPRO ! ! !
NAMD ! ! !
NWChem ! ! !
Q-Chem ! !

5

Precompiled materials science
and chemistry codes at NERSC

Codes Hopper Franklin Carver
ABINIT ! ! !
CP2K ! ! !
CPMD !
Quantum
Espresso

! ! !

LAMMPS ! ! !
Qbox !
SIESTA ! ! !
VASP ! ! !
WIEN2k !

•  Modules
–  An approach that manage user environment for
different versions of software
–  Simply use “load” and “unload” to control user
environment
–  Commonly used module commands (man module):

•  Module avail - to see available modules
•  Module load, module unload
•  Module list - to see loaded modules list
•  Module show- show what envs defined in the module

•  Modules just define some environment
variables in your shell environment if loaded

How to access

•  Access restrictions:
–  G09 – just need to agree the license statement
–  VASP – available to the users who own VASP
licenses by themselves

•  Some module commands display
–  module show vasp

•  ls -l /usr/common/usg/vasp/5.2.11/bin
–  module load vasp

•  Which vasp
–  module show g09

•  ls -l /usr/common/usg/g09/b11/g09/*.exel
•  ls –l /usr/common/usg/g09/b11/g09/tests/com

How to access

Qsub –I –V –l
nodes=2:ppn=8 –q
interactive

Cd $PBS_O_WORKDIR
Module load vasp
mpirun –np 16 vasp

8

How to run on Carver

Note:
Be aware of the parallel job launching scripts in chemistry codes,
eg., qchem, molpro, gamess,…, the aprun or mpirun is called
inside the launching script.

Running interactively Running through batch jobs
% cat test.pbs

#PBS -N test_vasp
#PBS -q regular
#PBS –l nodes=4:ppn=8
#PBS –l walltime=12:00:00
#PBS -j oe
#PBS -V
cd $PBS_O_WORKDIR
module load vasp
mpirun -n 32 vasp

% qsub test.pbs

9

How to run on Carver
G09 sample job script

#!/bin/bash -l
#PBS -N t1
#PBS -q regular
#PBS -l nodes=2:ppn=8,walltime=06:00:00
#PBS -j oe
#PBS -V

mkdir -p $SCRATCH/g09/$PBS_JOBID
cd $SCRATCH/g09/$PBS_JOBID
module load g09
ulimit –Sv unlimited
g09l < $HOME/g_tests/T/t1.inx > $HOME/
g_tests/T/t1.out
ls -l

Memory limit on Carver
compute nodes:
2.5GB and 20GB for soft and
hard memory limit on small
memory nodes;
5.5GB and 44GB for large
memory nodes

To raise the limit:
For bash/ksh:
ulimit –Sv unlimited
For csh/tcsh:
limit vmemoryuse unlimited

Standard out/error
redirection:
avoid file name
conflict

•  MP2 in g09 can easily fill up your global
home quota (40GB)

Nbasis=694, %Nproclinda=4

•  Always run jobs on scratch file system
which has much larger quota, 20TB.

Note: Scratch file system is subject to purge, save
important results to HPSS archive system.

http://www.nersc.gov/nusers/systems/hpss/

Running on scratch file system

-rw-r--r-- 1 zz217 zz217 557263618048 Mar 30 23:56 Gau-14106.scr-00003
-rw-r--r-- 1 zz217 zz217 557263618048 Mar 30 23:56 Gau-17399.scr-00002
-rw-r--r-- 1 zz217 zz217 557263618048 Mar 30 23:56 Gau-10198.scr-00001
-rw-r--r-- 1 zz217 zz217 557272006656 Mar 30 23:57 Gau-9483.rwf

Qsub –I –V –l mppwidth=48
–q interactive

Cd $PBS_O_WORKDIR
Module load vasp
aprun –n 48 vasp

% cat test.pbs
#PBS -N test_vasp
#PBS -q regular
#PBS –l mppwidth=128
#PBS –l walltime=12:00:00
#PBS -j oe
#PBS -V
cd $PBS_O_WORKDIR
module load vasp
aprun –n 128 vasp

% qsub test.pbs

11

How to run on Hopper

Running in batch job Running interactively

12

Running on unpacked nodes

% cat test.pbs
#PBS -N test_vasp
#PBS -q regular
#PBS –l mppwidth=768
#PBS –l walltime=12:00:00
#PBS -j oe
#PBS -V

cd $PBS_O_WORKDIR
module load vasp
aprun –n 384 –N12 –S3 vasp

% qsub test.pbs

Running on 12 cores per node

-N12: 12 tasks per node,
-S3: 3 tasks per numa node/socket
man aprun for aprun options

Note: -S option is
important when running
on fewer than 24 cores
on the node. On a vasp
job with 660 atom
system, ~2.5 times
performance difference
has been observed.

13

Optimal MPI tasks placement on
a Hopper node

aprun –n128 –N4 aprun –n128 –N4 –S1

14

Bundle up jobs on hopper
#!/bin/bash -l
#PBS -q regular
#PBS -l mppwidth=144
#PBS -l walltime=12:00:00
#PBS -N my_job
#PBS –j oe
#PBS -V

cd $PBS_O_WORKDIR
module load vasp
for d in 1 2 3
do
cd dir$d
aprun -n 72 vasp &
cd ../
done
wait

This is useful when these
jobs have similar run time

Note: A similar job script
like this would not work on
Carver, because the
parallel job launcher
mpirun on Carver always
starts from the first node
allocated regardless if
other jobs have used the
node or not.

•  qsub, qstat, qalter, qmove
–  qstat -Qf
–  qalter –l walltime=15:00 jobid
–  qmove debug jobid

•  Showq, checkjob
–  Showq - approximate priority in the queue
–  Checkjob –v jobid, check job status, can catch
some obvious errors

Useful commands

•  Request the shortest safe wall clock time
if possible for a better queue turnaround
•  Test job script before submitting a long
job
•  Check point your jobs if available
•  Keep job ids for your jobs

Good practice

Out of memory error and parallel scaling

•  Memory requirement depends on job
types, and implementations
•  Some codes work within the memory
requested (or default memory), G09,
NWChem, Molpro, …, etc.

–  Gracefully exit when memory is not sufficient
•  Others use all the memory available on the
node, VASP, Quantum Espresso, LAMMPS,
NAMD,…

–  Killed by the operating system

Two types of memory errors

•  Running at too high concurrency
–  Not necessarily reduce the time to solution
–  Code behavior often is not predictable outside of
the scaling region
–  Waste resources

•  Running at too low concurrency
–  Lose productivity unnecessarily
–  Easily run into memory issues

Parallel scaling issues

•  Request memory in the input file:
–  Default 32mw=256mb
–  %mem=18gb for SMP+Linda parallel execution
–  %mem=2gb for Linda only parallel execution

•  Parallel execution of G09 has to be
requested in the g09 input file

–  %NprocShared=8
–  %NprocLinda=2
–  If not, jobs run in serial, only 1 core in use, the rest
idle
–  Slowdown productivity, wasting computing resource

Example 1: G09

•  G09 provides ways to estimate the memory
requirement for various jobs

–  M + 2(NB)2 (in 8-byte words), where M is the default
32mw, NB is the number of basis functions
–  freqmem – determines the memory needed for
frequency jobs

•  Link 0 Recommendations:
–  Run in SMP+Linda parallel
–  %mem=18gb
–  %NprocShared=8
–  %NprocLinda=2

•  G09 reduces threads until fit into memory

Memory usage of G09

•  G09 runs with a sequence of executables
(links), but not all of them can run on multiple
nodes

–  Some of them are Linda parallel (could run on
multiple nodes); and some of them are SMP parallel
only; and the rest are serial only. 17 out of 79 links
are Linda parallelized.
–  Use %Kjob l301 to find out if the sequence of
executables (links) that need to run in advance, so to
determine if the main component of your calculation
can be run on multiple nodes or not.

Parallel scaling of G09

23

Parallel scaling of some g09 links

UHF calculation for a system with 61
atoms, NBasis=919

cores

0

200

400

600

800

1000

1200

1400

1600

1800

l502 l914 l508 l914 l508 l914 l502 l804

Ti
m

e
(m

in
ut

es
)

G09 links

Time spent in each link

UHF calculation for a system with 61 atoms,
NBasis=919
Followed by UCIS calculation
NprocLinda=4
Nprocshared=8

Note: Link 804 runs on only one node, other 3
were idling!

* This job hit the wall limit 48 hours while
executing l914.

•  When using multiple nodes to run g09
jobs, need to consider if the serial/smp only
components are the most time consuming
part.
•  If yes, then submit separate jobs
(dependent jobs) instead of a job with
multiple job steps
•  Using many nodes to run g09 is not a very
good idea, use with caution

Parallel scaling of G09

•  Memory requirement of VASP
–  Accurate estimation is difficult
–  NKDIM*NBANDS*NRPLWV*16 –wave function
–  4*(NGXF/2+1)*NGYF*NGZF*16 – work arrays
–  http://cms.mpi.univie.ac.at/vasp/guide/node90.html

•  If your job run out of memory
–  Use smaller NPAR if possible. The default
NPAR=the number of cores used. But some VASP
jobs don’t run with reduced NPAR value, eg., hybrid.
–  http://cms.mpi.univie.ac.at/vasp/guide/
node139.html

Example 2: VASP

•  Use more cores
–  so each core needs to store less distributable data

•  Running on reduced number of cores per
node

–  more memory available for each task, especially
helpful if the memory to store local data was not
sufficient

•  Use larger memory nodes
–  Trade-off is slow queue turnaround

What else we can do

Running on a reduced number of
cores per node on Carver

#PBS -q regular
#PBS -l nodes=4:ppn=2
#PBS -l pvmem=10GB
#PBS -l walltime=00:10:00
#PBS -N test_vasp
#PBS –j oe
#PBS -V

cd $PBS_O_WORKDIR
module lod vasp
mpirun -np 8 vasp

ppn 24GB Node 48GB Node
1 pvmem=20GB pvmem=44GB
2 pvmem=10GB pvmem=22GB
4 pvmem=5GB pvmem=11GB

Process Memory Limits
Type of Node Soft Limit Hard
Limit
Login Node 2GB 2GB
24GB Compute Node 2.5GB 20GB
48GB Compute Node 5.5GB 44GB

28

Running on large memory nodes

#PBS -q regular
#PBS –l mppwidth=768
#PBS -l mpplabels=bigmem
#PBS –l walltime=00:30:00
#PBS -N test_vasp
#PBS –j oe
#PBS -V

cd $PBS_O_WORKDIR
module load vasp
aprun –n 768 vasp

Hopper

#PBS -q regular
#PBS -l nodes=4:ppn=8:bigmem
#PBS -l walltime=00:10:00
#PBS -N test_vasp
#PBS –j oe
#PBS -V

cd $PBS_O_WORKDIR
module lod vasp
mpirun -np 8 vasp

Carver

29

Parallel scaling of VASP

154 atoms,8 k-points, 128 cores used
Time spent in one SC electronic step
*NPAR=2, time=193.13s

Depends on the problem
size and job types.

NPAR=8 runs faster for
128 core runs ~ sqrt
(number of cores used)

The default NPAR does
not run faster than other
medium NPAR values

Carver

30

Parallel scaling of VASP

Cores

Strong scaling
System with 154 atoms,8-
kpoints

Carver

31

Parallel scaling of VASP

Cores

Strong scaling
System with 660 atoms

Carver

VASP scales well up
to ~500 cores at least

for this 660 atom
system on Carver

32

Parallel scaling of VASP

Hopper

Cores

Strong scaling
System with 660 atoms

VASP scales well up
to ~800 cores at least

for this 660 atom
system on Hopper

•  VASP (5.2.11) scales well up to near 1
core/atom level both on Hopper and Carver
•  When choosing how many cores to use for
your job, 1/2 ~ 1 core/per atom would be a
good number to start with.
•  The scaling of VASP could be affected by
many other parameters.

Parallel scaling of VASP

•  Comparison between gamma-only version
and the general k-point version

*Time to execute the second SC step for RMM-DIIS scheme for
660 atom system

•  It is recommended to use the gamma point
only version if the system contains only
gamma point

Gamma point only VASP

Memory (GB) Execution time(s) WAVECAR size
General kpoint

version
0.61 209* 21328479040

Gamma point
only version

0.49 204* 10664239520

Explore the performance benefits from the
hybrid (MPI+OpenMP) execution on Hopper

36

Hybrid Quantum Espresso on
Hopper

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6

Ti
m

e
(s

)

Number of Threads

Exeuction time change with threads

AUSURF112

GRIR686-720cores

GRIR686-unpacked

Two benchmark cases were tested with the hybrid
(MPI+OpenMP) QE code on Hopper
2 threads per MPI task performs best

37

Hybrid Quantum Espresso on
Hopper

0

0.5

1

1.5

2

2.5

1 2 3 6

m
em

or
y

(g
b)

Number of Threads

Memory change with threads

AUSURF112-288cores

GRIR686-720cores

GRIR686-unpacked

The memory usage reduces when
using more threads

#!/bin/bash -l
#PBS -q regular
#PBS -N test
#PBS -l walltime=2:00:00
#PBS -l mppwidth=768
#PBS -j oe
#PBS -V

cd $PBS_O_WORKDIR
module load espresso
export
OMP_NUM_THREADS=2

aprun -n 384 -N12 -S3 -d2 pw.x
-input inputfile

•  Taking G09 and VASP as examples,
addressed two main issues users run into
when running jobs at NERSC

–  For G09 our recommendation is to request the
maximum available memory for g09 jobs and not to
use a lot of nodes unless you know what you are
doing.
–  For VASP jobs that run into out of memory error,
in addition to trying NPAR=1 in the VASP input file
where applicable, they could be run on more cores
and/or on a fewer number of cores per node. Also
large memory nodes can be used.

Summary

•  Exploring performance benefits from
hybrid execution is recommended on hopper.

–  hybrid execution reduced memory requirement
significantly and could also potentially reduce the time
to solution.

•  We didn’t address other codes, but the
same rule to deal with VASP memory issue
will apply to other codes as well.

Summary

•  Recommended readings:
–  NERSC website, especially

•  http://www.nersc.gov/nusers/systems/carver/
running_jobs/index.php
•  https://newweb.nersc.gov/users/computational-systems/
hopper/running-jobs/

–  man pages:
•  mpirun
•  aprun
•  qsub, runtime environment variables

•  Ask NERSC consultants questions
–  Email: consult@nersc.gov
–  Phone: 1-800-666-3772 (or 1-510-486-8600),
menu option 3
–  We work with users on a variety of issues
–  Some issues can be solved immediately, others
require collaborations for weeks or months

